

Ajenti

Ajenti is a highly extensible platform.
The core of the platform provides HTTP server, Socket engine and Plugin container.
The extensibility is implemented via a system of extension plugins.

The backend is written in Python (Ajenti Core).
The frontend is written in Angular application hosted in the core plugin shell.

For more information about the architecture see the Architecture and how it works.

Feature Overview

HTTP Server

	HTTP 1.1 Support.

	Websockets with fallback to XHR polling.

	Fast event-loop based processing.

	Flexible routing.

	Session sandboxing.

	SSL with client certificate authentication.

Performance

	>1000 requests per second.

	30 MB RAM footprint + 5 MB per session.

API

	Highly modular Python API. Everything is a module and can be removed or replaced.

	Builtin webserver API supports routing, file downloads, GZIP, websockets and more.

	Transparent SSL client authorization.

	Plugin architecture

	Dependency injection

	Server-side push and socket APIs.

Security

	Pluggable authentication and authorization.

	Stock authenticators: UNIX account, password, SSL client certificate and Mozilla Persona E-mail authentication.

	Unprivileged sessions isolated in separate processes.

	Fail2ban rule

Frontend

	Clean, modern and responsive UI. Single-page, no reloads.

	Live data updates and streaming with Socket.IO support.

	Full mobile and tablet support.

	LESS support.

	Numerous stock directives.

	Angular framework

Platforms

	Debian 9 or later

	Ubuntu Bionic or later

	RHEL 8 or later

	Can be run on other Linux or BSD systems with minimal modifications.

	Supports Python 3.5+.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Installing

Caution

Supported operating systems:

	Debian 9 or later

	Ubuntu Bionic or later

	RHEL 8 or later

Other Linux-based systems might work, but you’ll have to use manual installation method.

Automatic Installation

curl https://raw.githubusercontent.com/ajenti/ajenti/master/scripts/install.sh | sudo bash -s -

Automatic Installation in virtual environment

Caution

Please note that this install method is still under tests. Ajenti starts successfully on the previously mentioned supported operating systems, but all functionalities were not tested. Be kind to report any problem with this install method as issue here : https://github.com/ajenti/ajenti/issues

curl https://raw.githubusercontent.com/ajenti/ajenti/master/scripts/install-venv.sh | sudo bash -s -

Manual Installation

Native dependencies: Debian/Ubuntu

Enable Universe repository (Ubuntu only):

sudo add-apt-repository universe

sudo apt-get install build-essential python3-pip python3-dev python3-lxml libssl-dev python3-dbus python3-augeas python3-apt ntpdate

Native dependencies: RHEL

Enable EPEL repository:

sudo dnf install epel-release

sudo dnf install -y gcc python3-devel python3-pip python3-pillow python3-augeas python3-dbus chrony openssl-devel redhat-lsb-core

Install Ajenti 2

Upgrade PIP:

sudo pip3 install setuptools pip wheel -U

Minimal install:

sudo pip3 install ajenti-panel ajenti.plugin.core ajenti.plugin.dashboard ajenti.plugin.settings ajenti.plugin.plugins

With all plugins:

sudo pip3 install ajenti-panel ajenti.plugin.ace ajenti.plugin.augeas ajenti.plugin.auth-users ajenti.plugin.core ajenti.plugin.dashboard ajenti.plugin.datetime ajenti.plugin.filemanager ajenti.plugin.filesystem ajenti.plugin.network ajenti.plugin.notepad ajenti.plugin.packages ajenti.plugin.passwd ajenti.plugin.plugins ajenti.plugin.power ajenti.plugin.services ajenti.plugin.settings ajenti.plugin.terminal

Uninstall Ajenti 2

Ajenti is a collection of Python modules installed with pip, delivered with an init script (systemd or sysvinit). So it’s necessary to remove the init script, then the Python librairies, and the configurations files.

Systemd

sudo systemctl stop ajenti.service
sudo systemctl disable ajenti.service
sudo systemctl daemon-reload
sudo rm -f /lib/systemd/system/ajenti.service

SysVinit

/etc/init.d/ajenti stop
rm -f /etc/init/ajenti.conf

Python3 modules

List all modules from Ajenti:

sudo pip3 list | grep aj

The result should be something like (eventually more or less plugins):

aj 2.1.43
ajenti-panel 2.1.43
ajenti.plugin.ace 0.30
ajenti.plugin.auth-users 0.31
ajenti.plugin.core 0.99
ajenti.plugin.dashboard 0.39
ajenti.plugin.filesystem 0.47
ajenti.plugin.passwd 0.24
ajenti.plugin.plugins 0.47
ajenti.plugin.session-list 0.4
ajenti.plugin.settings 0.30

Then simply remove all these modules:

sudo pip3 uninstall -y aj ajenti-panel ajenti.plugin.ace ajenti.plugin.auth-users ajenti.plugin.core ajenti.plugin.dashboard ajenti.plugin.filesystem ajenti.plugin.passwd ajenti.plugin.plugins ajenti.plugin.session-list ajenti.plugin.settings

Configuration files

If you don’t need it for later, just delete the directory /etc/ajenti/:

sudo rm -rf /etc/ajenti/

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Running Ajenti

Starting service

The automatic install script provides binary ajenti-panel and initscript/job/unit ajenti.
You can ensure the service is running:

service ajenti restart

or:

/etc/init.d/ajenti restart

or:

systemctl restart ajenti

The panel will be available on HTTPS port 8000 by default. The default username is root, and the password is your system’s root password.

Ajenti can also be run in a verbose debug mode:

ajenti-panel -v

Commandline options

	-c, --config <file> - Use given config file instead of default

	-v - Debug/verbose logging

	--log <level> - Fix log level : debug, info, warning or error

	--dev - Enables automatic resources build on each request

	-d, --daemon - Run in background (daemon mode)

	--stock-plugins - Run with provided plugins (default if option --plugins is not used)

	--plugins <dir> - Run with additional plugins

	--autologin - Will automatically log in the user under which the panel runs. This is a security issue if your system is public.

Debugging

If Ajenti does not start as intended, there are various ways to debug this, but it is good to know that the problem can have an origin in Python code or in Javascript code.

Debug Python problems

First of all, have a look at:

/var/log/ajenti/ajenti.log

It may contain some running errors which could be useful to understand the problem.

The traceback of a total crash would be stored in:

/var/log/ajenti/crash-DATE.log

If this log files do not provide enough informations, you can manually start Ajenti in debug mode as root:

systemctl stop ajenti
/usr/local/bin/ajenti-panel -v

This will increase the verbosity of Ajenti in /var/log/ajenti/ajenti.log, but you can also directly follow the progress of Ajenti start with:

systemctl stop ajenti
/usr/local/bin/ajenti-panel --dev

and then stop it as usual with Ctrl + C.
Don’t forget after this to restart the Ajenti process if necessary:

systemctl start ajenti

Debug Javascript problems

The best way to do it is to launch the developer tools in your browser, usually with F12, and to look if some errors are shown.

Submit the errors

The best way to help the development of Ajenti is then to submit the errors at https://github.com/ajenti/ajenti/issues/new with all informations (traceback, OS, Python version, …).

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Configuration files

All the configuration files are store in /etc/ajenti :

	config.yml: the main configuration file with all important parameters,

	smtp.yml: credentials to an email server relay, if you want to use some mail notifications or reset password functionality,

	users.yml: the default file which contains user account for the user authentication provider.

All configuration files use the yaml format [https://en.wikipedia.org/wiki/YAML]

config.yml in details

Ajenti will use the following parameters :

auth block

auth:
 allow_sudo: true
 emails: {}
 provider: os
 users_file: /etc/ajenti/users.yml

Explanations:

	allow_sudo: true or false (allow users in the sudo group to elevate)

	emails: {} (not currently used)

	provider: authentication method to use, os (users from the os) or users

	users_file: if the users authentication provider is used, path to the users file (default /etc/ajenti/users.yml)

The parameter user_config was used to specified where the user configuration was stored, but is now deprecated, since it’s bound to the provider (os or users) to avoid duplicates entries.

bind block

bind:
 host: 0.0.0.0
 mode: tcp
 port: 8000

Explanations:

	host: ip on which to listen (default 0.0.0.0)

	mode: type of socket, tcp or unix

	port: port on which to listen, default 8000

ssl block

ssl:
 enable: true
 certificate: /etc/ajenti/mycert.pem
 fqdn_certificate: /etc/letsencrypt/ajenti.pem
 force: false
 client_auth:
 enable: true
 force: true
 certificates:
 digest: 15:E8:5E:E5:D2:E8:75:0D:53:FF:22:A8:79:28:E5:BE:33:E0:37:07:FB:31:47:4D:61:69:AB:43:F8:5B:23:78
 name: C=NA,ST=NA,O=sajenti.mydomain.com,CN=root@ajenti.mydomain.com
 serial: 352674123960898230347891590646542168839110009016
 user: root

Explanations:

	enable: true or false to provide support for https. It’s highly recommended to set it to true

	certificate: full path to default global certificate, used to generate client certificates, and fot the https protocol, if the parameter fqdn_certificate is not set. The PEM file should contains the certificate itself, and the private key.

	fqdn_certificate: full path certificate for your FQDN (e.g. /etc/ajenti/mycert.pem). The PEM file should contains the certificate itself, and the private key.

	force: spawn a small listener on port 80 to enable a redirect from http://hostname to https://hostname:port.

	
	client_auth:

	
	enable: true or false to enable client authentication via certificates

	force: if true, only allows login with client certificate. If false, also permit authentication with password

	
	certificates: this entry contains all client certifcates for an automatic login. It will be filled through the settings in Ajenti with the following structure:

	
	digest: digest of the certificate

	name: name of the certificate

	serial: serial of the certificate

	user: username

email block

email:
 enable: true
 templates:
 reset_email : /etc/ajenti/email/mytemplate_for_reset_password.html

Explanations:

	enable: true or false, if you want to enable the password reset function. But for this you need to set the smtp credentials in /etc/ajenti/smtp.yml

	templates:
* reset_email: full path to template email for reset password functionality

The default template used to reset email password is located here [https://github.com/ajenti/ajenti/blob/master/ajenti-core/aj/static/emails/reset_email.html].
The variables are automatically filled with jinja2.

Other global parameters

color: blue
language: en
logo: /srv/dev/ajenti/ajenti-panel/aj/static/images/Logo.png
max_sessions: 10
name: ajenti.mydomain.com
restricted_user: nobody
session_max_time: 1200

Explanations:

	color: secundary color of the CSS theme (possibles values are default, bluegrey, red, deeporange, orange, green, teal, blue and purple)

	language: language prefence for all users, default en

	logo: full path to your own logo, default is the one from Ajenti [https://github.com/ajenti/ajenti/blob/master/ajenti-core/aj/static/images/Logo.png]

	max_sessions: max number of simultaneously sessions, default is 99. If the max is reached, the older inactive session will be deactivated

	name: your domain name

	restricted_user: user to use for the restricted functionalities, like for the login page. It’s an important security parameter in order to limit the actions in restricted environments : all actions in restricted environments will be done with this user’s privileges.
Default is nobody.

	session_max_time: max validity time in seconds before automatic logout.
Default is 3600 (one hour).

	trusted_domains (Ajenti >= 2.2.1) : comma separated list of trusted domains under which it’s possible to reach your Ajenti server. When the HTTP headers are tested, a valid origin will be considered as one of the domains listed. It’s necessary to specify the protocol. It’s mean that an entry should look like http://my.domain.com.

	trusted_proxies (Ajenti >= 2.2.1) : comma separated list of trusted proxies. This is actually used in order to get the real ip of the client.

smtp.yml in details

This file contains all the credentials of an email server which can be used as email relay to send some notifications, like an email to reset a forgotten password.

smtp:
 password: MyVeryStrongStrongPassword
 port: starttls
 server: mail.mydomain.com
 user: mail@mydomain.com

Explanations:

	port: starttls (will use 587) or ssl (will use 465)

	server: server hostname, like mail.mydomain.com

	user: user to authenticate

	password: password of the mail user

users.yml in details

Ajenti gives the possibility to use two authentication methods : os or users. If users is used, all user informations are stored in users_file. It’s automatically filled with the user plugin.

The default path for the users_file is /etc/ajenti/users.yml with following structure:

users:
 arnaud:
 email: arnaud@mydomain.com
 fs_root: /home/arnaud
 password: 73637279707.....
 permissions:
 packages:install: false
 sidebar:view:/view/cron: false
 uid: 1002

Explanations:

	password: hash of the password

	permissions: list of permissions of the user

	uid: related os uid to run the worker on

	fs_root: root directory

	email: email to use for password reset.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Securing

Fail2ban

Failed login attempts are logged in /var/log/ajenti/ajenti.log. A basic filter for Fail2ban is available here : https://raw.githubusercontent.com/ajenti/ajenti/master/scripts/ajenti.conf

You can enable it by copying it in /etc/fail2ban/filter.d/ajenti.conf and with the following lines in /etc/fail2ban/jail.d/ajenti :

[ajenti]
enabled = true
port = 8000
bantime = 120
maxretry = 3
findtime = 60
logpath = /var/log/ajenti/ajenti.log
filter = ajenti

This is only an example : after 3 failed attempts (maxretry) the last 60 seconds (findtime), the found ip will be banned 2 minutes (bantime). You can naturally set other values related to your configuration.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Contributing to Ajenti

Translations

All translations are stored by Crowdin [https://crowdin.com/], and any help is welcome.
It’s possible to translate directly all strings in the great interface of Crowdin and then we can include and compile it into the next release:

Ajenti on Crowdin [https://crowdin.com/project/ajenti]

Testing

It’s always good to have some users feedback, because we may oversee some problems. If you find an issue, please post it on GitHub [https://github.com/ajenti/ajenti/issues] with a complete description of the problem, and we will try to solve it and improve Ajenti.

Developping

	There’s two main axes to develop Ajenti :

	
	Extension plugins: like e.g. a plugin to manage the fstab file,

	Core: improve Ajenti on server side.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin check_certificates

You can see with one look if your SSL certificates are still valid or not.

[image: ../_images/rd-check_cert-list.png]
The list view let you see the hostname,the port, the issuer of the certificate, the end of the certificate, and the status of the connection.

It’s pretty easy to add or to remove an hostname. By default, a test will be done on port 443, the standart one for HTTPS.
But you can naturally specify something else, like 8000 or 587.

If the port 587 is specified, Ajenti will try to open a STARTTLS connection, e.g. for email server.

[image: ../_images/rd-check_cert-add.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin core

The main plugin of Ajenti is the core plugin.

[image: ../_images/rd-login.png]
This plugin manages:

	the authentication process,

	user environment setup,

	session management,

	the way the resources are delivered (CSS, JS, etc …),

	the main template and the main style of Ajenti,

	the entries in the sidebar,

	error handling,

	password reset,

	configurations (Ajenti, user config).

[image: ../_images/rd-pwreset.png]
It delivers a lot of tools, services, components for the other plugins too:

	hotkeys,

	tasks,

	pushs,

	dialogs,

	progress spinner,

	navbox,

	messagebox,

	smartprogerss,

	customization,

	translations with gettext,

	notifications,

	socketio.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin cron

This plugin allows to handle all entries in a personal cron file.

[image: ../_images/rd-cron-list.png]
This is quite equivalent as running crontab -l -u USER to manage your own cronjobs.

With this plugin, you can:

	add jobs,

	remove jobs,

	edit jobs,

	edit special entries (@yearly, etc …),

	set environment variables,

	add comments.

[image: ../_images/rd-cron-add.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin dashboard

This is the default landing page after successfully authenticate.

[image: ../_images/rd-dashboard.png]
It’s possible to display the widgets of your choice, and to order them as you want with a simple drag&drop.

You can also add other tabs, and rename them the way you want.

The list of actual available widgets:

	Check certificates,

	CPU Usage,

	Disk space (you can choose the mount point),

	Hostname,

	Load average,

	Memory usage,

	Power state,

	Script (run your own command),

	Service (status of a service in systemd or sysv init),

	Sessions (logged in users),

	Traffic,

	Uptime.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin datetime

This plugin displays the current time zone used, and time and date set on the server.

[image: ../_images/rd-date.png]
It’s possible to:

	change the time zone used,

	set the time on the server,

	synchronize time using NTP (package ntpdate is for this necessary).

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin docker

This plugin allows to show all running containers and images from a locally docker instance.

[image: ../_images/rd-docker-containers.png]
The default tab shows all containers, with their names and id, and you can:

	start/stop a container,

	remove a container,

	see memory usage, cpu usage and network I/O

On the second tab, you will see the stored images with their sizes.

You can easily choose which one you want to delete.

[image: ../_images/rd-docker-images.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin filemanager

This plugin let you navigate on the server filesystem and perform all common operations on files and directories.

[image: ../_images/rd-filemanager.png]
Currently, it’s possible to:

	create new files, new directories,

	upload a file through drag&drop,

	navigate in many tabs,

	cut, copy, delete files and directories (you must first select at least one object),

	display the properties of an object,

	easily navigate between directory with the breadcrumb.

[image: ../_images/rd-filemanager-properties.png]
In the properties view you will see all common informations (permissions, last change date, owner, etc … the same as the command stat).

If the file is plain text, a button Edit in Notepad will appear and let you modify the file.

You can also change the permissions of the file:

[image: ../_images/rd-filemanager-permissions.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin fstab

The first tab shows the output of the mount command with some util informations like:

	filesystem type,

	mountpoint,

	used space,

	total size.

The button on the right let you unmount the desired device, but you should use it with caution (don’t try to unmount the root fs!).

[image: ../_images/rd-fstab-mount.png]
The second tab lists all entries in /etc/fstab and let you add/modify or delete the entries.

But you should also be careful here with what you are doing.

[image: ../_images/rd-fstab-file.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin network

This plugin contains the utilities to show the most important informations about your network interfaces.

[image: ../_images/rd-network.png]

Tab network

You will see all network interfaces, their IP and status. It’s possible to bring an interface up or down and change some of their properties (not yet implemented for systems running with netplan).
It’s also possible to update the hostname name.

Tab DNS

This tab enable DNS management (add or delete DNS server).

Tab Hosts

Lists all entries in the file /etc/hosts, and modify or delete any single of them.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin notepad

Based on the ACE editor [https://ace.c9.io], you can:

	edit all plain text files,

	create a new file,

	save an existing file in another location,

	manage all of these files with tabs.

Hotkey:

	Ctrl + O : open file

	Ctrl + N : new file

	Ctrl + S : save file

[image: ../_images/rd-notepad.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin packages

In order to manage the packages installed on your server, the plugin packages provides a quick search to filter the packages matching the search query.

Actually, the supported package engines are APT and PIP.

It’s necessary to enter at least 3 chars in the search to automatically get a packages list, and then perform usual operations:

	see if a package is installed,

	see the version,

	see if a newer version is available,

	install/update a package,

	remove a package.

[image: ../_images/rd-packages.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin plugins

Ajenti is pretty flexible and allow anyone to write its own plugin (backend Python and frontend AngularJS).

In order to manage all plugins and their versions, the plugin plugins lists all available plugins, shows if they are installed, or if an update if published.

The main plugin core can not be uninstalled, because Ajenti can not run without it, but you can check whenever a new version is available.

Updating or removing a plugin is this way pretty easy.

[image: ../_images/rd-plugins.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin power

Basically handle all around power management on your server.

Uptime appears, and you can also reboot or shutdown the server if needed.

[image: ../_images/rd-power.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin services

The plugin services shows the status of services in systemd or in system V init.

[image: ../_images/rd-systemd.png]
For the systemd unit services, you can:

	start/stop/restart the service,

	enable/disable the service, if not static.

For the system V init services, you can:

	start/stop/restart the service,

	kill a running service.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin session_list

this plugin displays the logged users, their ip and the timeout.

[image: ../_images/rd-sessions.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin settings

This page gives access to the settings stored in /etc/ajenti/config.yml and /etc/ajenti/smtp.yml.

For a full description of the configuration files, please see Configuration files.

After changing the settings, it’s necessary to restart the panel.

Tab General

[image: ../_images/rd-settings-general.png]
This tab contains the binding settings, language, hostname set in Ajenti et color style.

Tab Security

[image: ../_images/rd-settings-security.png]
You can choose:

	the authentication provider (OS or USERS),

	allow sudo elevation or not,

	set the timeout of a session,

	configure SSL and certificates,

	configure SSL and certificates for client authentication.

Tab Smtp relay

[image: ../_images/rd-settings-smtp.png]
This tab provides the credentials saved in /etc/ajenti/smtp.yml.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin terminal

It would be really cool to have an terminal access on the server. That’s exactly what this plugin does!

You have the possibility to launch a command (and naturally see the result) or to open a whole terminal on the server. You will get the same environment as your user on the system.

Type exit or Ctrl + D to come back to the terminal list.

Hotkeys

	Ctrl + C : copy

	Ctrl + V : paste

	Ctrl + D : exit

[image: ../_images/rd-terminal.png]

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin users

The default authentication provider used in Ajenti is the OS provider which allows all users of the system to log in.

The plugin auth_users provides an alternative way to authenticate users, and to create custom users. All users data are stored in plain text, in /etc/ajenti/users.yml (but this is configurable).

[image: ../_images/rd-users-list.png]
The default view presents a list of current users and let you:

	add a new user,

	manage the properties of an existing user,

	delete an existing user.

[image: ../_images/rd-users-properties.png]
The property modal window displays some utilities per account:

	system account: all user accounts must be bound to a system account in order to set the privileges. An user bound to root wil have all privileges, but an user bound to a system user account like arnaud will only have the privileges of the system user arnaud.

	password change: only a hash is stored, not the password itself,

	set the email: for notifications or password reset function,

	select the sidebar entries and permissions of the user.

Don’t forget to SAVE the changes when updating an user.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Architecture and how it works

Backend

Ajenti project itself consists of Ajenti Core and a set of stock plugins forming the Ajenti Panel.

Ajenti Core

Represents the core backend and it’s the entry point of Ajenti.

	HTTP server

	IoC container

	Base classes and Interfaces

	Simplistic web framework

	Set of core components aiding in client-server communications

Ajenti Panel

	Startup script

	Plugins developed for the Ajenti Core (filemanager, terminal, notepad, etc.)

Modus operandi

During bootstrap, Ajenti Core will locate and load Python modules containing Ajenti plugins (identified by a plugin.yml file). It will then register the implementation classes found in them in the root IoC container. Some interfaces to be implemented include aj.api.http.HttpPlugin, aj.plugins.core.api.sidebar.SidebarItemProvider.

Ajenti Core runs a HTTP server on a specified port, managing a pool of isolated session workers and forwarding requests to these workers, delivering them to the relevant aj.api.http.HttpPlugin instances. It also supports Socket.IO connections, forwarding them to the relevant aj.api.http.SocketEndpoint instances.

Ajenti contains a mechanism for session authentication through PAM login and sudo elevation. Standard core plugin provides HTTP API for that.

Authenticated sessions are moved to isolated worker processes running under the corresponding account.

Frontend

[image: ../_images/frontend-architecture.png]

	The frontend can be divided into two main parts:

	
	core part (plugin shell and ngx-ajenti)

	extension plugins (ace, dashboard, filemanager,..)

Screenshot

shell (plugin)

Serves as a container for other plugins. Plugins are implemented as micro-frontends and are loaded within the shell.
It uses @angular-architects/module-federation [https://www.npmjs.com/package/@angular-architects/module-federation] package of Angular Architects.
For deep dive into Webpack 5’s module federation usage with Angular see the
link [https://www.angulararchitects.io/en/aktuelles/the-microfrontend-revolution-module-federation-in-webpack-5/].

	Basic navigation (Header, Siderbar, Routing,..)

	Container for other plugins

	Config management

ngx-ajenti (plugin)

Represents the shared library.

	Authentication and Identity management

	Global (TS) services and components

	Navigation (Header, Siderbar, Routing,..)

	Config management

	Plugin manager

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Ajenti Dev Multitool

sudo pip install ajenti-dev-multitool

ajenti-dev-multitool is a mini-utility to help you with common plugin development tasks.

ajenti-dev-multitool typically operates on all plugins found in current directory and below.

	--run will launch the globally installed Ajenti with plugins from the current directory. --run-dev will additionally enable developer mode.

	--build-frontend builds the frontend resources.

	--setuppy "<setup.py-command-with-args>" runs a setuptools command on the plugin package. A setup.py file is generated automatically. Example: ajenti-dev-multitool --setuppy 'sdist upload --sign --identity "John Doe"'

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

User Interface

Basics

Ajenti frontend is a Angular based single-page rich web application.

Your plugins can extend it by adding new Angular components and routes.

Client-server communication is facilitated by AJAX requests to backend API (HttpClient) and a Socket.IO connection (socket and push Angular services).

Client styling is based on a customized Bootstrap build.

Example

Warning

This part is obsolete. The demo-plugins repo must be converted from AngularJS to Angular.

Basic UI example can be browsed and downloaded at https://github.com/ajenti/demo-plugins/tree/master/demo_2_ui

The basic UI plugin includes:

	an AngularJS module [https://github.com/ajenti/demo-plugins/blob/master/demo_2_ui/resources/js/module.coffee] containing a route [https://github.com/ajenti/demo-plugins/blob/master/demo_2_ui/resources/js/routing.coffee] and a controller [https://github.com/ajenti/demo-plugins/blob/master/demo_2_ui/resources/js/controllers/index.controller.coffee]:

	an AngularJS view template [https://github.com/ajenti/demo-plugins/blob/master/demo_2_ui/resources/partial/index.html] (HTML)

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Handling HTTP Requests

This page describes how to handle HTTP request on the backend side.

Example

Basic HTTP API example can be browsed and downloaded at https://github.com/ajenti/demo-plugins/tree/master/demo_4_http

Plugins can provide their own HTTP endpoints by extending the aj.api.http.HttpPlugin abstract class.

Example:

import time
from jadi import component

from aj.api.http import get, HttpPlugin

from aj.api.endpoint import endpoint, EndpointError, EndpointReturn

@component(HttpPlugin)
class Handler(HttpPlugin):
 def __init__(self, context):
 self.context = context

 @get(r'/api/demo4/calculate/(?P<operation>\w+)/(?P<a>\d+)/(?P\d+)')
 @endpoint(api=True)
 def handle_api_calculate(self, http_context, operation=None, a=None, b=None):
 start_time = time.time()

 try:
 if operation == 'add':
 result = int(a) + int(b)
 elif operation == 'divide':
 result = int(a) / int(b)
 else:
 raise EndpointReturn(404)
 except ZeroDivisionError:
 raise EndpointError('Division by zero')

 return {
 'value': result,
 'time': time.time() - start_time
 }

@endpoint(api=True) mode provides automatic JSON encoding of the responses and error handling.

If you need lower-level access to the HTTP response, use @endpoint(page=True):

@get(r'/api/test')
@endpoint(page=True)
def handle_api_calculate(self, http_context):
 http_context.add_header('Content-Type', '...')
 content = "Hello!"
 #return http_context.respond_not_found()
 #return http_context.respond_forbidden()
 #return http_context.file('/some/path')
 http_context.respond_ok()
 return content

See aj.http.HttpContext for the available http_context methods.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Dashboard Widgets

The dashboard (plugin) provides a way how to extend dashboard with some extra widgets.
This is done by implementing a new module containing the new widget(s).

Example of a Traffic widget (located in the traffic module)

[image: ../_images/example-widget.png]

Example implementation

	Elements to be implemented

	
	Backend: Widget class

	Backend: Widget config endpoint (Optional)

	Frontend: WidgetComponent

	Frontend: Widget config component (Optional)

Backend: Widget class

This class must implement the aj.plugins.dashboard.widget. It’s used for the registration in the backend and as a provider for the widget data.
Dashboard will issue periodic requests to your aj.plugins.dashboard.api.Widget implementations.
If user creates multiple widgets of same type, a single instance will be created to service their requests.

Example widget class:

@component(Widget)
class TrafficWidget(Widget):
 id = 'traffic'
 name = _('Traffic')

 ..

 def get_value(self, config):
 ...

 return { .. }

Backend: Widget config endpoint (Optional)

This is required only if the widget is configurable.
The endpoint is implemented as a handler from the HttpPlugin
The decorator @url will register the endpoint in the backend.:

@component(HttpPlugin)
class Handler(HttpPlugin):
 ..

 @url(r'/api/traffic/interfaces')
 @endpoint(api=True)
 def handle_api_interfaces(self, http_context):
 ..
 return ..

Frontend: WidgetComponent

This is the actual UI shown to the user. It’s implemented as a Angular component.
This component must be exposed in the webpack.config.js as part of the ModuleFederationPlugin.

Widget component implementation: https://github.com/ajenti/demo-plugins/tree/master/demo_5_widget/frontend/components/demowidget/

Webpack registration: https://github.com/ajenti/demo-plugins/tree/master/demo_5_widget//frontend/webpack.config.js#L35

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Extension plugins

This page describes the way how to setup the development environment for the development of extension plugins.

Required knowledge

	Python 3, Typescript, Angular, HTML

Steps

	
	Setup Ajenti (core)

	
	Install build tools

	
	Setup plugin environment

1. Setup Ajenti (core)

The Ajenti (core) is required for the development and run of any plugin.
There are two development scenarios:

Develop only an extension plugin

Install the Ajenti(Core): Installation guide

Develop an extension plugin + Ajenti(core) and the same time

Run the Ajenti(Core) in the development mode Core

2. Install build tools

Follow the steps in Build tools

4. Plugin development

4.1 Edit existing plugin

See the plugins-new/Readme.txt [https://github.com/daniel-schulz/netzint-ajenti/blob/dev/plugins-new/README.md]

4.2 Create a new plugin

Create a new plugin in the current directory:

ajenti-dev-multitool --new-plugin "Some plugin name"

Build frontend:

ajenti-dev-multitool --build-frontend

Start start the backend:

#If Ajenti(core) was installed
sudo ajenti-dev-multitool --run-dev
#Navigate to http://localhost:8000/

#If Ajenti(core) is running in the dev mode:
make rundev

See the plugins-new/Readme.txt to see how to start the frontend [https://github.com/daniel-schulz/netzint-ajenti/blob/dev/plugins-new/README.md]

What’s inside a plugin?

	Backend: Python modules, which contain jadi.component classes (components).

	Frontend (optional): Angular components, services and LESS files.

Example plugin structure:

some_plugin_name
├── backend/
│ ├── controllers
│ │ └── dashboard.py
│ ├── __init__.py
│ └── requirements.txt
│
├── frontend/
│ ├── e2e/
│ └── src/
│ ├── components
│ │ └── uptime-widget.component.html
│ │ └── uptime-widget.component.less
│ │ └── uptime-widget.component.ts
│ ├── services
│ │ └── dashboard.service.ts
│ └── dashboard.module.ts
│
├── locale/
├── plugin.yml #plugin description
└── README.md

Example plugins

See the demo-plugins git repo for some example plugin implementations.

Warning

This part is obsolete. The demo-plugins repo must be converted from AngularJS to Angular.

Download plugins from here: https://github.com/ajenti/demo-plugins or clone this entire repository.

Prep work:

ajenti-dev-multitool --build-frontend

Run:

ajenti-dev-multitool --run-dev

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Core

This page describes the way how to setup the development environment for the development of the core.

Attention

For plugin/extension development see Extension plugins

Required knowledge

	Python 3.x, async programming with gevent, HTML, Angular, Typescript, LESS

Prerequisites

Minimal set of software required to build and run Ajenti: git, Node.js

Debian/Ubuntu extras: python3-dbus (ubuntu)

Steps

There are two ways how to setup the core.

	Automatic (Recommended)

	Manual

Automatic Installation (Backend + Frontend)

The following script will perform a complete automatic installation under Debian or Ubuntu, using virtual environment with Python.
The virtual environment is then located in /opt/ajenti and the cloned git repository in /opt/ajenti/ajenti.
This install script will install a lot of dependencies, this may take several minutes.

curl https://raw.githubusercontent.com/ajenti/ajenti/master/scripts/install-dev.sh | sudo bash -s -

After a successful installation, do the following to activate the dev mode:

	Activate the virtual environment : source /opt/ajenti/bin/activate

	Navigate in the git repository : cd /opt/ajenti/ajenti

	Launch a rundev recipe : make rundev (quit with Ctrl+ C)

	Call https://localhost:8000 in your browser (you will get some warnings because of the self-signed certificate, it’s perfectly normal.

Manual installation - Backend

Download the source code:

git clone git://github.com/ajenti/ajenti.git

Install the dependencies:

Debian/Ubuntu
sudo apt-get install build-essential python3-pip python3-dev python3-lxml libffi-dev libssl-dev libjpeg-dev libpng-dev uuid-dev python3-dbus

RHEL
sudo dnf install gcc python3-devel python3-pip libxslt-devel libxml2-devel libffi-devel openssl-devel libjpeg-turbo-devel libpng-devel dbus-python

cd ajenti
sudo pip3 install -r ajenti-core/requirements.txt
sudo pip3 install ajenti-dev-multitool

Install the build tools

Follow: Build tools

Ensure that resource compilation is set up correctly and works (optional):

make build

Launch Ajenti backend in dev mode:

make rundev

Navigate to http://localhost:8000/.

Hint

Additional debug information will be available in the console output and browser console.
Reloading the page with Ctrl-F5 (Cache-Control: no-cache) will unconditionally rebuild all resources

Manual installation - Frontend

The setup the core frontend is needed to build and run the plugins: ngx-ajenti and shell

The way how to do it is described here in the plugins-new/README.md
See the Readme https://github.com/daniel-schulz/netzint-ajenti/blob/dev/plugins-new/README.md

For more info see What’s Ajenti and how it works.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Build tools

This setup is required for the development of the Core and the Extension plugins.

Steps

Install Curl:

sudo apt install curl

Install NodeJS - you can use the NodeSource repositories for quick setup:

Using Ubuntu
curl -sL https://deb.nodesource.com/setup_17.x | sudo -E bash -
sudo apt-get install -y nodejs

Using Debian, as root
curl -sL https://deb.nodesource.com/setup_17.x | bash -
apt-get install -y nodejs

Using RHEL or centos, as root
curl -sL https://rpm.nodesource.com/setup_17.x | bash -

Install Yarn - Enable the official Yarn repository, import the repository GPG key, and install the package.:

Using Ubuntu
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt update
sudo apt install --no-install-recommends yarn

Install Angular CLI:

sudo yarn global add @angular/cli

Install Gettext:

Ubuntu or Debian:
sudo apt-get install gettext

RHEL or CentOS
dnf install gettext

Install Ajenti Dev Multitool:

pip3 install ajenti-dev-multitool

(More info about the Ajenti Dev Multitool)

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: jadi

	
jadi.get_fqdn(cls)

	Returns a fully-qualified name for the given class

	
jadi.interface(cls)

	Marks the decorated class as an abstract interface.

Injects following classmethods:

	
.all(context)

	Returns a list of instances of each component in the context implementing this @interface

	Parameters

	context (Context) – context to look in

	Returns

	list(cls)

	
.any(context)

	Returns the first suitable instance implementing this @interface or raises NoImplementationError if none is available.

	Parameters

	context (Context) – context to look in

	Returns

	cls

	
.classes()

	Returns a list of classes implementing this @interface

	Returns

	list(class)

	
jadi.component(iface)

	Marks the decorated class as a component implementing the given iface

	Parameters

	iface (interface()) – the interface to implement

	
jadi.service(cls)

	Marks the decorated class as a singleton service.

Injects following classmethods:

	
.get(context)

	Returns a singleton instance of the class for given context

	Parameters

	context (Context) – context to look in

	Returns

	cls

	
class jadi.Context(parent=None)

	An IoC container for interface() s, service() s and component() s

	Parameters

	parent (Context) – a parent context

	
get_component(cls)

	

	
get_components(cls, ignore_exceptions=False)

	

	
get_service(cls)

	

	
exception jadi.NoImplementationError(cls)

	

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj

	
aj.config = <module 'aj.config' from '/home/docs/checkouts/readthedocs.org/user_builds/ajenti2/checkouts/ajenti-3-dev/ajenti-core/aj/config.py'>

	Configuration dict

	
aj.platform = 'debian'

	Current platform

	
aj.platform_string = 'Ubuntu 18.04.5 LTS'

	Human-friendly platform name

	
aj.platform_unmapped = 'ubuntu'

	Current platform without “Ubuntu is Debian”-like mapping

	
aj.version = '2.2.1'

	Ajenti version

	
aj.server = None

	Web server

	
aj.debug = False

	Debug mode

	
aj.init()

	

	
aj.exit()

	

	
aj.restart()

	

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.api.http

	
class aj.api.http.BaseHttpHandler

	Base class for everything that can process HTTP requests

	
handle(http_context)

	Should create a HTTP response in the given http_context and return
the plain output

	Parameters

	http_context (aj.http.HttpContext) – HTTP context

	
class aj.api.http.HttpMasterMiddleware(context)

	
	
handle(http_context)

	Should create a HTTP response in the given http_context and return
the plain output

	Parameters

	http_context (aj.http.HttpContext) – HTTP context

	
class aj.api.http.HttpMiddleware(context)

	
	
handle(http_context)

	Should create a HTTP response in the given http_context and return
the plain output

	Parameters

	http_context (aj.http.HttpContext) – HTTP context

	
class aj.api.http.HttpPlugin(context)

	A base interface for HTTP request handling:

@component
class HelloHttp(HttpPlugin):
 @get('/hello/(?P<name>.+)')
 def get_page(self, http_context, name=None):
 context.add_header('Content-Type', 'text/plain')
 context.respond_ok()
 return 'Hello, f"{name}"!'

	
handle(http_context)

	Finds and executes the handler for given request context
(handlers were methods decorated with url() and will be
decorated with e.g. @get and @post in the future)

	Parameters

	http_context (aj.http.HttpContext) – HTTP context

	Returns

	reponse data

	
class aj.api.http.SocketEndpoint(context)

	Base interface for Socket.IO endpoints.

	
destroy()

	Destroys endpoint, killing the running greenlets

	
on_connect(message)

	Called on a successful client connection

	
on_disconnect(message)

	Called on a client disconnect

	
on_message(message, *args)

	Called when a socket message arrives to this endpoint

	
plugin = None

	arbitrary plugin ID for socket message routing

	
send(data, plugin=None)

	Sends a message to the client.the

	Parameters

	
	data – message object

	plugin (str) – routing ID (this endpoint’s ID if not specified)

	
spawn(target, *args, **kwargs)

	Spawns a greenlet in this endpoint, which will be auto-killed when the client disconnects

	Parameters

	target – target function

	
aj.api.http.delete(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.get(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.head(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.patch(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.post(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.put(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

	
aj.api.http.requests_decorator_generator(method)

	Factorization to generate request decorators like @get or @post.

	Parameters

	method (basestring) – Request method decorator to generate, like get or post

	Returns

	

	Return type

	

	
aj.api.http.url(pattern)

	Exposes the decorated method of your HttpPlugin via HTTP.
Will be deprecated in favor of new decorators (@get, @post, …)

	Parameters

	pattern (str) – URL regex (^ and $ are implicit)

	Return type

	function

Named capture groups will be fed to function as **kwargs

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.api.endpoint

	
exception aj.api.endpoint.EndpointError(inner, message=None)

	To be raised by endpoints when a foreseen error occurs.
This exception doesn’t cause a client-side crash dialog.

	Parameters

	
	inner – inner exception

	message – message

	
exception aj.api.endpoint.EndpointReturn(code, data=None)

	Raising EndpointReturn will return a custom HTTP code in the API endpoints.

	Parameters

	
	code – HTTP code

	data – response data

	
aj.api.endpoint.endpoint(page=False, api=False, auth=True)

	It’s recommended to decorate all HTTP handling methods with @endpoint.

@endpoint(auth=True) will require authenticated session before giving control to the handler.

@endpoint(api=True) will wrap responses and exceptions into JSON, and will also provide special handling of EndpointsError

	Parameters

	
	auth (bool) – requires authentication for this endpoint

	page (bool) – enables page mode

	api (bool) – enables API mode

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.config

	
class aj.config.UserConfigService(context)

	
	
classmethod get(context)

	

	
get_provider()

	

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.core

	
aj.core.restart()

	

	
aj.core.run(config=None, plugin_providers=None, product_name='ajenti', dev_mode=False, debug_mode=False, autologin=False)

	A global entry point for Ajenti.

	Parameters

	
	config (aj.config.BaseConfig) – config file implementation instance to use

	plugin_providers (list(aj.plugins.PluginProvider)) – list of plugin providers to load plugins from

	product_name (str) – a product name to use

	dev_mode (bool) – enables dev mode (automatic resource recompilation)

	debug_mode (bool) – enables debug mode (verbose and extra logging)

	autologin (bool) – disables authentication and logs everyone in as the user running the panel. This is EXTREMELY INSECURE.

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.entry

	
aj.entry.handle_crash(exc)

	

	
aj.entry.start(daemonize=False, log_level=20, dev_mode=False, **kwargs)

	A wrapper for run() that optionally runs it in a forked daemon process.

	Parameters

	kwargs – rest of arguments is forwarded to run()

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.http

	
class aj.http.HttpContext(env, start_response=None)

	Instance of HttpContext is passed to all HTTP handler methods

	
env

	WSGI environment dict

	
path

	Path segment of the URL

	
method

	Request method

	
headers

	List of HTTP response headers

	
body

	Request body

	
response_ready

	Indicates whether a HTTP response has already been submitted in this context

	
query

	HTTP query parameters

	
add_header(key, value)

	Adds a given HTTP header to the response

	Parameters

	
	key (str) – header name

	value (str) – header value

	
classmethod deserialize(data)

	

	
dump_env()

	

	
fallthrough(handler)

	Executes a handler in this context

	Returns

	handler-supplied output

	
file(path, stream=False, inline=False, name=None)

	Returns a GZip compressed response with content of file located in path and correct headers

	
get_cleaned_env()

	

	
gzip(content, compression=6)

	Returns a GZip compressed response with given content and correct headers

	Parameters

	compression (int) – compression level from 0 to 9

	Return type

	str

	
json_body()

	

	
redirect(location)

	Returns a HTTP 302 Found redirect response with given location

	
remove_header(key)

	Removed a given HTTP header from the response

	Parameters

	key (str) – header name

	
respond(status)

	Creates a response with given HTTP status line

	
respond_forbidden()

	Returns a HTTP 403 Forbidden response

	
respond_not_found()

	Returns a HTTP 404 Not Found response

	
respond_ok()

	Creates a HTTP 200 OK response

	
respond_server_error()

	Returns a HTTP 500 Server Error response

	
respond_unauthenticated()

	Returns a HTTP 401 Unauthenticated response

	
run_response()

	Finalizes the response and runs WSGI’s start_response().

	
serialize()

	

	
class aj.http.HttpMiddlewareAggregator(stack)

	Stacks multiple HTTP handlers together in a middleware fashion.

	Parameters

	stack (list(aj.api.http.BaseHttpHandler)) – handler list

	
handle(http_context)

	Should create a HTTP response in the given http_context and return
the plain output

	Parameters

	http_context (aj.http.HttpContext) – HTTP context

	
class aj.http.HttpRoot(handler)

	A root WSGI middleware object that creates the HttpContext and dispatches
it to an HTTP handler.

	Parameters

	handler (aj.api.http.BaseHttpHandler) – next middleware handler

	
dispatch(env, start_response)

	Dispatches the WSGI request

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

API: aj.plugins

	
class aj.plugins.PluginProvider

	A base class for plugin locator

	
provide()

	Should return a list of found plugin paths

	Returns

	list(str)

	
class aj.plugins.DirectoryPluginProvider(path)

	A plugin provider that looks up plugins in a given directory.

	Parameters

	path – directory to look for plugins in

	
provide()

	Should return a list of found plugin paths

	Returns

	list(str)

	
class aj.plugins.PythonPathPluginProvider

	A plugin provider that looks up plugins on $PYTHONPATH

	
provide()

	Should return a list of found plugin paths

	Returns

	list(str)

	
exception aj.plugins.PluginLoadError

	

	
exception aj.plugins.PluginCrashed(exception)

	
	
describe()

	

	
class aj.plugins.Dependency

	
	
exception Unsatisfied

	
	
describe()

	

	
reason()

	

	
build_exception()

	

	
check()

	

	
value

	

	
yaml_loader

	alias of yaml.loader.SafeLoader

	
yaml_tag = '!Dependency'

	

	
class aj.plugins.ModuleDependency(module_name=None)

	
	
exception Unsatisfied

	
	
reason()

	

	
description = 'Python module'

	

	
is_satisfied()

	

	
yaml_tag = '!ModuleDependency'

	

	
class aj.plugins.PluginDependency(plugin_name=None)

	
	
exception Unsatisfied

	
	
reason()

	

	
description = 'Plugin'

	

	
is_satisfied()

	

	
yaml_tag = '!PluginDependency'

	

	
class aj.plugins.OptionalPluginDependency(plugin_name=None)

	
	
exception Unsatisfied

	
	
reason()

	

	
description = 'Plugin'

	

	
is_satisfied()

	

	
yaml_tag = '!OptionalPluginDependency'

	

	
class aj.plugins.BinaryDependency(binary_name=None)

	
	
exception Unsatisfied

	
	
reason()

	

	
description = 'Application binary'

	

	
is_satisfied()

	

	
yaml_tag = '!BinaryDependency'

	

	
class aj.plugins.FileDependency(file_name=None)

	
	
exception Unsatisfied

	
	
reason()

	

	
description = 'File'

	

	
is_satisfied()

	

	
yaml_tag = '!FileDependency'

	

	
class aj.plugins.PluginManager(context)

	Handles plugin loading and unloading

	
classmethod get(context)

	

	
get_content_path(name, path)

	

	
get_crash(name)

	

	
get_loaded_plugins_list()

	

	
load_all_from(providers)

	Loads all plugins provided by given providers.

	Parameters

	providers (list(PluginProvider)) –

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.core

This Angular module contains core components of Ajenti frontend.

Services

	
class config()

	
	
config.data

	Config file content object

	
config.load()

	Gets complete configuration data of the backend

	Returns

	promise

	
config.save()

	Updates and saves configuration data

	Returns

	promise

	
config.getUserConfig()

	Gets per-user configuration data of the backend

	Returns

	promise → per-user Ajenti config object

	
config.setUserConfig(config)

	Updates and saves per-user configuration data

	Arguments

	
	config (object) – updated configuration data from getUserConfig()

	Returns

	promise

	
class core()

	
	
core.pageReload()

	Reloads the current URL

	
core.restart()

	Restarts the Ajenti process

	
class hotkeys()

	Captures shortcut key events

	
hotkeys.ENTER, ESC

	Respective key codes

	
hotkeys.on(scope, handler, mode='keydown')

	Registers a hotkey handler in the provided scope

	Arguments

	
	scope ($scope) – $scope to install handler into

	handler (function(keyCode,rawEvent)) – handler function. If the function returns a truthy value, event is cancelled and other handlers aren’t notified.

	mode (string) – one of keydown, keypress or keyup.

	
class identity()

	Provides info on the authentication status and user/machine identity

	
identity.user

	Name of the logged in user

	
identity.effective

	Effective UID of the server process

	
identity.machine.name

	User-provided name of the machine

	
identity.isSuperuser

	Whether current user is a superuser or not

	
identity.auth(username, password, mode)

	Attempts to authenticate current session as username:password with a mode of normal or sudo

	
identity.login()

	Redirects user to a login dialog

	
identity.logout()

	Deauthenticates current session

	
identity.elevate()

	Redirects user to a sudo elevation dialog

	
class messagebox()

	Provides interface to modal messagebox engine

	
messagebox.show(options)

	Opens a new messagebox.

	Arguments

	
	options (object) –

	options.title (string) –

	options.text (string) –

	options.positive (string) – positive action button text. Clicking it will resolve the returned promise.

	options.negative (string) – negative action button text. Clicking it will reject the returned promise.

	options.template (string) – (optional) custom body template

	options.scrollable (boolean) – whether message body is scrollable

	options.progress (boolean) – whether to display an indeterminate progress indicator in the message

	Returns

	a Promise-like object with an additional close() method.

	
class notify()

	
	
notify.info(title, text)

	

	
notify.success(title, text)

	

	
notify.warning(title, text)

	

	
notify.error(title, text)

	Shows an appropriately styled notification

	
notify.custom(style, title, text, url)

	Shows a clickable notification leading to url.

	
class pageTitle()

	Alters page <title> and global heading.

	
pageTitle.set(text)

	Sets title text

	
pageTitle.set(expression, scope)

	Sets an title expression to be watched. Example:

$scope.getTitle = (page) -> someService.getPageTitle(page)
$scope.page = ...

pageTitle.set("getTitle(page)", $scope)

	
class push()

	Processes incoming push messages (see aj.plugins.core.api.push). This service has no public methods.

This service broadcasts events that can be received as:

$scope.$on 'push:pluginname', (message) ->
 processMessage(message)...

	
class tasks()

	An interface to the tasks engine (see aj.plugins.core.api.tasks).

	
tasks.tasks

	A list of task descriptors for the currently running tasks. Updated automatically.

	
tasks.start(cls, args, kwargs)

	Starts a server-side task.

	Arguments

	
	cls (string) – full task class name (aj.plugins.pluginname....)

	args (array) – task arguments

	kwargs (object) – task keyword arguments

	Returns

	a promise, resolved once the task actually starts

Directives

	
autofocus()

	Automatically focuses the input. Example:

<input type="text" autofocus ng:model="..." />

	
checkbox()

	Renders a checkbox. Example:

	
dialog()

	A modal dialog

Example:

<dialog ng:show="showDialog">
 <div class="modal-header">
 <h4>
 Heading
 </h4>
 </div>
 <div class="modal-body scrollable">
 ...
 </div>
 <div class="modal-footer">
 <a ng:click="..." class="btn btn-default btn-flat">
 Do something

 </div>
</dialog>

	Arguments

	
	ngShow (expression) –

	dialogClass (string) –

	
floating-toolbar()

	A toolbar pinned to the bottom edge. Example:

<div class="floating-toolbar-padder"></div>

<floating-toolbar>
 <a ng:click="..." class="btn btn-default btn-flat">
 Do something useful

</floating-toolbar>

<!-- accented toolbar for selection actions -->

<floating-toolbar class="accented" ng:show="haveSelectedItems">
 Some action buttons here
</floating-toolbar>

	
ng-enter()

	Action handler for Enter key in inputs. Example:

<input type="text" ng:enter="commitStuff()" ng:model="..." />

	
progress-spinner()

	

	
root-access()

	Blocks its inner content if the current user is not a superuser.

	
smart-progress()

	An improved version of ui-bootstrap’s progressbar

	Arguments

	
	animate (boolean) –

	value (float) –

	max (float) –

	text (string) –

	maxText (string) –

Filters

	
bytesFilter(value, precision)

	
	Arguments

	
	value (int) – number of bytes

	precision (int) – number of fractional digits in the output

	Returns

	string, e.g.: 123.45 KB

	
ordinalFilter(value)

	
	Arguments

	
	value (int) –

	Returns

	string, e.g.: 121st

	
pageFilter(list, page, pageSize)

	Provides a page-based view on an array

	Arguments

	
	list (array) – input data

	page (int) – 1-based page index

	pageSize (int) – page size

	Returns

	array

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.ace

ACE code editor integration

Directives

	
ace-editor()

	
	Arguments

	
	ngModel (binding) –

	aceOptions (object) – (optional) options for ace.setOptions()

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.augeas

Services

	
class augeas()

	
	
augeas.get(endpoint)

	Reads an Augeas tree from server side.

	Returns

	promise → AugeasConfig

	
augeas.set(endpoint, config)

	Overwrites an Augeas tree on the server side.

	Returns

	promise

	
class AugeasNode()

	
	
AugeasNode.name

	

	
AugeasNode.value

	

	
AugeasNode.parent

	

	
AugeasNode.children

	

	
AugeasNode.fullPath()

	

	
class AugeasConfig()

	This is a JS doppelganger of normal Augeas API. In particular, it doesn’t support advanced XPath syntax, and operates with regular expressions instead.

	
AugeasConfig.get(path)

	
	Returns

	AugeasNode

	
AugeasConfig.set(path, value)

	

	
AugeasConfig.model(path)

	
	Returns

	a getter/setter function suitable for use as a ngModel

	
AugeasConfig.insert(path, value, index)

	

	
AugeasConfig.remove(path)

	

	
AugeasConfig.match(path)

	
	Returns

	Array(string)

	
AugeasConfig.matchNodes(path)

	
	Returns

	Array(AugeasNode)

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.filesystem

Services

	
class filesystem()

	
	
filesystem.read(path)

	
	Returns

	promise → content of path

	
filesystem.write(path, content)

	
	Returns

	promise

	
filesystem.list(path)

	
	Returns

	promise → array

	
filesystem.stat(path)

	
	Returns

	promise → object

	
filesystem.chmod(path, mode)

	
	Arguments

	
	mode (int) – numeric POSIX file mode

	Returns

	promise

	
filesystem.createFile(path, mode)

	
	Arguments

	
	mode (int) – numeric POSIX file mode

	Returns

	promise

	
filesystem.createDirectory(path, mode)

	
	Arguments

	
	mode (int) – numeric POSIX file mode

	Returns

	promise

	
filesystem.downloadBlob(content, mime, name)

	Launches a browser-side file download

	Arguments

	
	content (string) – Raw file content

	mime (string) – MIME type used

	name (string) – Default file name for saving

	Returns

	promise

Directives

	
file-dialog()

	File open/save dialog. Example:

<file-dialog
 mode="open"
 ng:show="openDialogVisible"
 on-select="open(item.path)"
 on-cancel="openDialogVisible = false">
</file-dialog>

<file-dialog
 mode="save"
 ng:show="saveDialogVisible"
 on-select="saveAs(path)"
 on-cancel="saveDialogVisible = false"
 name="saveAsName">
</file-dialog>

	Arguments

	
	ngShow (expression) –

	onSelect (expression(item)) – called after opening or saving a file. item is an object with a path property.

	onCancel (expression) – (optional) handler for the cancel button

	mode (string) – one of open, save

	name (binding) – (optional) name for the saved file

	path (binding) – (optional) current

	
path-selector()

	An input with a file selection dialog:

<path-selector ng:model="filePath"></path-selector>

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.passwd

Services

	
class passwd()

	
	
passwd.list()

	
	Returns

	promise → array of the users registered in the system

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.services

Services

	
class services()

	
	
services.getManagers()

	
	Returns

	promise → array of the available service managers

	
services.getServices(managerId)

	
	Returns

	promise → array of the available services in the ServiceManager

	
services.getService(managerId, serviceId)

	
	Returns

	promise → object, gets a single service from the manager

	
services.runOperation(managerId, serviceId, operation)

	
	Arguments

	
	operation (string) – typically start, stop, restart, reload; depends on the service manager

	Returns

	promise

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Angular: ajenti.terminal

Services

	
class terminals()

	
	
terminals.list()

	
	Returns

	promise → array of opened terminal descriptors

	
terminals.kill(terminalId)

	Kills a running terminal process

	Returns

	promise

	
terminals.create(options)

	Creates a new terminal

	Arguments

	
	options.command (string) –

	options.autoclose (boolean) –

	Returns

	promise → new terminal ID

	
terminals.full(terminalId)

	
	Returns

	promise → full content of the requested terminal

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.core.api.push

	
class aj.plugins.core.api.push.Push(context)

	A service providing push messages to the client.

	
classmethod get(context)

	

	
push(plugin, msg)

	Sends a push message to the client.

	Parameters

	
	plugin – routing ID

	msg – message

	
register()

	

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.core.api.sidebar

	
class aj.plugins.core.api.sidebar.Sidebar(context)

	
	
build()

	Returns a complete tree of sidebar items.

	Returns

	dict

	
classmethod get(context)

	

	
class aj.plugins.core.api.sidebar.SidebarItemProvider(context)

	Interface for providing sidebar items.

	
provide()

	Should return a list of sidebar items, each in the following format:

{
 'id': 'optional-id',
 'attach': 'category:general', # id of the attachment point or None for top level
 'name': 'Dashboard',
 'icon': 'bar-chart',
 'url': '/view/dashboard',
 'children': [
 ...
]
}

	Returns

	list(dict)

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.core.api.tasks

	
class aj.plugins.core.api.tasks.Task(context, *args, **kwargs)

	Tasks are one-off child processes with progress reporting. This is a base abstract class.

	
abort()

	

	
name = None

	Display name

	
push(plugin, message)

	An interface to aj.plugins.core.api.push.Push usable from inside the task’s process

	
report_progress(message=None, done=None, total=None)

	Updates the task’s process info.

	Parameters

	
	message – text message

	done – number of processed items

	total – total number of items

	
run()

	Override this with your task’s logic.

	
send_log_event(method, message, *args, **kwargs)

	

	
start()

	Starts the task’s process

	
class aj.plugins.core.api.tasks.TasksService(context)

	
	
abort(_id)

	

	
format_tasks()

	

	
classmethod get(context)

	

	
notify(message=None)

	

	
remove(_id)

	

	
send_update()

	

	
start(task)

	

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.augeas.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.auth-users.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.dashboard.widget

	
class aj.plugins.dashboard.widget.Widget(context)

	Base interface for dashboard widgets.

	
get_value(config)

	Override this to return the widget value for the given config dict.

	
id = None

	

	
name = None

	Display name

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.check_certificates.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.datetime.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.network.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.packages.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.power.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

Plugin: aj.plugins.services.api

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Python Module Index

 a |
 j

 		 	

 		
 a	

 	[image: -]
 	
 aj	

 	
 	
 aj.api.endpoint	

 	
 	
 aj.api.http	

 	
 	
 aj.config	

 	
 	
 aj.core	

 	
 	
 aj.entry	

 	
 	
 aj.http	

 	
 	
 aj.plugins	

 	
 	
 aj.plugins.core.api.push	

 	
 	
 aj.plugins.core.api.sidebar	

 	
 	
 aj.plugins.core.api.tasks	

 	
 	
 aj.plugins.dashboard.widget	

 		 	

 		
 j	

 	
 	
 jadi	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	abort() (aj.plugins.core.api.tasks.Task method)

 	(aj.plugins.core.api.tasks.TasksService method)

 	ace-editor() (built-in function)

 	add_header() (aj.http.HttpContext method)

 	aj (module)

 	aj.api.endpoint (module)

 	aj.api.http (module)

 	aj.config (module)

 	aj.core (module)

 	aj.entry (module)

 	aj.http (module)

 	aj.plugins (module)

 	aj.plugins.core.api.push (module)

 	aj.plugins.core.api.sidebar (module)

 	aj.plugins.core.api.tasks (module)

 	aj.plugins.dashboard.widget (module)

 	all() (jadi. method)

 	any() (jadi. method)

 	
 	augeas() (class)

 	augeas.get() (augeas method)

 	augeas.set() (augeas method)

 	AugeasConfig() (class)

 	AugeasConfig.get() (AugeasConfig method)

 	AugeasConfig.insert() (AugeasConfig method)

 	AugeasConfig.match() (AugeasConfig method)

 	AugeasConfig.matchNodes() (AugeasConfig method)

 	AugeasConfig.model() (AugeasConfig method)

 	AugeasConfig.remove() (AugeasConfig method)

 	AugeasConfig.set() (AugeasConfig method)

 	AugeasNode() (class)

 	AugeasNode.children (global variable or constant)

 	AugeasNode.fullPath() (AugeasNode method)

 	AugeasNode.name (global variable or constant)

 	AugeasNode.parent (global variable or constant)

 	AugeasNode.value (global variable or constant)

 	autofocus() (built-in function)

B

 	
 	BaseHttpHandler (class in aj.api.http)

 	BinaryDependency (class in aj.plugins)

 	BinaryDependency.Unsatisfied

 	
 	body (aj.http.HttpContext attribute)

 	build() (aj.plugins.core.api.sidebar.Sidebar method)

 	build_exception() (aj.plugins.Dependency method)

 	bytesFilter() (built-in function)

C

 	
 	check() (aj.plugins.Dependency method)

 	checkbox() (built-in function)

 	classes() (jadi. method)

 	component() (in module jadi)

 	config (in module aj)

 	config() (class)

 	config.data (global variable or constant)

 	
 	config.getUserConfig() (config method)

 	config.load() (config method)

 	config.save() (config method)

 	config.setUserConfig() (config method)

 	Context (class in jadi)

 	core() (class)

 	core.pageReload() (core method)

 	core.restart() (core method)

D

 	
 	debug (in module aj)

 	delete() (in module aj.api.http)

 	Dependency (class in aj.plugins)

 	Dependency.Unsatisfied

 	describe() (aj.plugins.Dependency.Unsatisfied method)

 	(aj.plugins.PluginCrashed method)

 	description (aj.plugins.BinaryDependency attribute)

 	(aj.plugins.FileDependency attribute)

 	(aj.plugins.ModuleDependency attribute)

 	(aj.plugins.OptionalPluginDependency attribute)

 	(aj.plugins.PluginDependency attribute)

 	
 	deserialize() (aj.http.HttpContext class method)

 	destroy() (aj.api.http.SocketEndpoint method)

 	dialog() (built-in function)

 	DirectoryPluginProvider (class in aj.plugins)

 	dispatch() (aj.http.HttpRoot method)

 	dump_env() (aj.http.HttpContext method)

E

 	
 	endpoint() (in module aj.api.endpoint)

 	EndpointError

 	
 	EndpointReturn

 	env (aj.http.HttpContext attribute)

 	exit() (in module aj)

F

 	
 	fallthrough() (aj.http.HttpContext method)

 	file() (aj.http.HttpContext method)

 	file-dialog() (built-in function)

 	FileDependency (class in aj.plugins)

 	FileDependency.Unsatisfied

 	filesystem() (class)

 	filesystem.chmod() (filesystem method)

 	filesystem.createDirectory() (filesystem method)

 	
 	filesystem.createFile() (filesystem method)

 	filesystem.downloadBlob() (filesystem method)

 	filesystem.list() (filesystem method)

 	filesystem.read() (filesystem method)

 	filesystem.stat() (filesystem method)

 	filesystem.write() (filesystem method)

 	floating-toolbar() (built-in function)

 	format_tasks() (aj.plugins.core.api.tasks.TasksService method)

G

 	
 	get() (aj.config.UserConfigService class method)

 	(aj.plugins.PluginManager class method)

 	(aj.plugins.core.api.push.Push class method)

 	(aj.plugins.core.api.sidebar.Sidebar class method)

 	(aj.plugins.core.api.tasks.TasksService class method)

 	(in module aj.api.http)

 	(jadi. method)

 	get_cleaned_env() (aj.http.HttpContext method)

 	get_component() (jadi.Context method)

 	
 	get_components() (jadi.Context method)

 	get_content_path() (aj.plugins.PluginManager method)

 	get_crash() (aj.plugins.PluginManager method)

 	get_fqdn() (in module jadi)

 	get_loaded_plugins_list() (aj.plugins.PluginManager method)

 	get_provider() (aj.config.UserConfigService method)

 	get_service() (jadi.Context method)

 	get_value() (aj.plugins.dashboard.widget.Widget method)

 	gzip() (aj.http.HttpContext method)

H

 	
 	handle() (aj.api.http.BaseHttpHandler method)

 	(aj.api.http.HttpMasterMiddleware method)

 	(aj.api.http.HttpMiddleware method)

 	(aj.api.http.HttpPlugin method)

 	(aj.http.HttpMiddlewareAggregator method)

 	handle_crash() (in module aj.entry)

 	head() (in module aj.api.http)

 	headers (aj.http.HttpContext attribute)

 	
 	hotkeys() (class)

 	hotkeys.ENTER, ESC (global variable or constant)

 	hotkeys.on() (hotkeys method)

 	HttpContext (class in aj.http)

 	HttpMasterMiddleware (class in aj.api.http)

 	HttpMiddleware (class in aj.api.http)

 	HttpMiddlewareAggregator (class in aj.http)

 	HttpPlugin (class in aj.api.http)

 	HttpRoot (class in aj.http)

I

 	
 	id (aj.plugins.dashboard.widget.Widget attribute)

 	identity() (class)

 	identity.auth() (identity method)

 	identity.effective (global variable or constant)

 	identity.elevate() (identity method)

 	identity.isSuperuser (global variable or constant)

 	identity.login() (identity method)

 	identity.logout() (identity method)

 	
 	identity.machine.name (global variable or constant)

 	identity.user (global variable or constant)

 	init() (in module aj)

 	interface() (in module jadi)

 	is_satisfied() (aj.plugins.BinaryDependency method)

 	(aj.plugins.FileDependency method)

 	(aj.plugins.ModuleDependency method)

 	(aj.plugins.OptionalPluginDependency method)

 	(aj.plugins.PluginDependency method)

J

 	
 	jadi (module)

 	
 	json_body() (aj.http.HttpContext method)

L

 	
 	load_all_from() (aj.plugins.PluginManager method)

M

 	
 	messagebox() (class)

 	messagebox.show() (messagebox method)

 	
 	method (aj.http.HttpContext attribute)

 	ModuleDependency (class in aj.plugins)

 	ModuleDependency.Unsatisfied

N

 	
 	name (aj.plugins.core.api.tasks.Task attribute)

 	(aj.plugins.dashboard.widget.Widget attribute)

 	ng-enter() (built-in function)

 	NoImplementationError

 	notify() (aj.plugins.core.api.tasks.TasksService method)

 	(class)

 	
 	notify.custom() (notify method)

 	notify.error() (notify method)

 	notify.info() (notify method)

 	notify.success() (notify method)

 	notify.warning() (notify method)

O

 	
 	on_connect() (aj.api.http.SocketEndpoint method)

 	on_disconnect() (aj.api.http.SocketEndpoint method)

 	on_message() (aj.api.http.SocketEndpoint method)

 	
 	OptionalPluginDependency (class in aj.plugins)

 	OptionalPluginDependency.Unsatisfied

 	ordinalFilter() (built-in function)

P

 	
 	pageFilter() (built-in function)

 	pageTitle() (class)

 	pageTitle.set() (pageTitle method), [1]

 	passwd() (class)

 	passwd.list() (passwd method)

 	patch() (in module aj.api.http)

 	path (aj.http.HttpContext attribute)

 	path-selector() (built-in function)

 	platform (in module aj)

 	platform_string (in module aj)

 	platform_unmapped (in module aj)

 	plugin (aj.api.http.SocketEndpoint attribute)

 	PluginCrashed

 	PluginDependency (class in aj.plugins)

 	PluginDependency.Unsatisfied

 	
 	PluginLoadError

 	PluginManager (class in aj.plugins)

 	PluginProvider (class in aj.plugins)

 	post() (in module aj.api.http)

 	progress-spinner() (built-in function)

 	provide() (aj.plugins.core.api.sidebar.SidebarItemProvider method)

 	(aj.plugins.DirectoryPluginProvider method)

 	(aj.plugins.PluginProvider method)

 	(aj.plugins.PythonPathPluginProvider method)

 	Push (class in aj.plugins.core.api.push)

 	push() (aj.plugins.core.api.push.Push method)

 	(aj.plugins.core.api.tasks.Task method)

 	(class)

 	put() (in module aj.api.http)

 	PythonPathPluginProvider (class in aj.plugins)

Q

 	
 	query (aj.http.HttpContext attribute)

R

 	
 	reason() (aj.plugins.BinaryDependency.Unsatisfied method)

 	(aj.plugins.Dependency.Unsatisfied method)

 	(aj.plugins.FileDependency.Unsatisfied method)

 	(aj.plugins.ModuleDependency.Unsatisfied method)

 	(aj.plugins.OptionalPluginDependency.Unsatisfied method)

 	(aj.plugins.PluginDependency.Unsatisfied method)

 	redirect() (aj.http.HttpContext method)

 	register() (aj.plugins.core.api.push.Push method)

 	remove() (aj.plugins.core.api.tasks.TasksService method)

 	remove_header() (aj.http.HttpContext method)

 	report_progress() (aj.plugins.core.api.tasks.Task method)

 	requests_decorator_generator() (in module aj.api.http)

 	
 	respond() (aj.http.HttpContext method)

 	respond_forbidden() (aj.http.HttpContext method)

 	respond_not_found() (aj.http.HttpContext method)

 	respond_ok() (aj.http.HttpContext method)

 	respond_server_error() (aj.http.HttpContext method)

 	respond_unauthenticated() (aj.http.HttpContext method)

 	response_ready (aj.http.HttpContext attribute)

 	restart() (in module aj)

 	(in module aj.core)

 	root-access() (built-in function)

 	run() (aj.plugins.core.api.tasks.Task method)

 	(in module aj.core)

 	run_response() (aj.http.HttpContext method)

S

 	
 	send() (aj.api.http.SocketEndpoint method)

 	send_log_event() (aj.plugins.core.api.tasks.Task method)

 	send_update() (aj.plugins.core.api.tasks.TasksService method)

 	serialize() (aj.http.HttpContext method)

 	server (in module aj)

 	service() (in module jadi)

 	services() (class)

 	services.getManagers() (services method)

 	services.getService() (services method)

 	
 	services.getServices() (services method)

 	services.runOperation() (services method)

 	Sidebar (class in aj.plugins.core.api.sidebar)

 	SidebarItemProvider (class in aj.plugins.core.api.sidebar)

 	smart-progress() (built-in function)

 	SocketEndpoint (class in aj.api.http)

 	spawn() (aj.api.http.SocketEndpoint method)

 	start() (aj.plugins.core.api.tasks.Task method)

 	(aj.plugins.core.api.tasks.TasksService method)

 	(in module aj.entry)

T

 	
 	Task (class in aj.plugins.core.api.tasks)

 	tasks() (class)

 	tasks.start() (tasks method)

 	tasks.tasks (global variable or constant)

 	TasksService (class in aj.plugins.core.api.tasks)

 	
 	terminals() (class)

 	terminals.create() (terminals method)

 	terminals.full() (terminals method)

 	terminals.kill() (terminals method)

 	terminals.list() (terminals method)

U

 	
 	url() (in module aj.api.http)

 	
 	UserConfigService (class in aj.config)

V

 	
 	value (aj.plugins.Dependency attribute)

 	
 	version (in module aj)

W

 	
 	Widget (class in aj.plugins.dashboard.widget)

Y

 	
 	yaml_loader (aj.plugins.Dependency attribute)

 	yaml_tag (aj.plugins.BinaryDependency attribute)

 	(aj.plugins.Dependency attribute)

 	(aj.plugins.FileDependency attribute)

 	(aj.plugins.ModuleDependency attribute)

 	(aj.plugins.OptionalPluginDependency attribute)

 	(aj.plugins.PluginDependency attribute)

Comments

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 _images/rd-docker-images.png
= Ajenti Docker

GENERAL
L Dashboard
22 Plugins
£ Settings

& Users

TOOLS
Check certificates
3 File Manager
& Notepad
2% Session list

>_ Terminal

SOFTWARE

» 0 Services

P Supervisor

SYSTEM
© Cron

@® Date & time

& ubuntu-focal

@ <

Container | Images

Repository Created Tag Size

tvial/docker-mailserver 16 months ago stable 628MB &
tvial/docker-mailserver 22 months ago <none> 579MB &
nextcloud 2 years ago fpm 712M8 5
nextcloud 2 years ago latest 724MB i
nginx 2 years ago latest 127MB 5
mariadb 2 years ago latest 356MB &
tvial/docker-mailserver 2 years ago <none> 541M8 5
jwilder/nginx-proxy 3 years ago latest 148MB ™
apereo/cas 3 years ago latest 642MB 5
jwilder/whoami 3 years ago latest 10.1MB &

_images/rd-filemanager-permissions.png
Permission bits

_images/rd-date.png
= Ajenti Date & Time

GENERAL
LuL Dashboard
B8 Plugins
& Settings

&% Users

TOOLS
Check certificates
D File Manager
Notepad
2% Session list

>_ Terminal

SOFTWARE
& Docker

~ 0 Services

& ubuntu-focal
Session time : 00:24:5(

Time zone

Etc/UTC

hd Set timezone

Date & time

29-March-2022

13

30

&} Sync time from the Internet

_images/rd-docker-containers.png
= Ajenti Docker

GENERAL
Ll Dashboard
22 Plugins
& Settings
&% Users

TOOLS
#& Check certificates
O3 File Manager

& Notepad
2% Session list

> Terminal

SOFTWARE

» 0 Services

P Supervisor

Container Images

Name (Hash)

Memory usage

Cpu usage

Network used

mail
09039d50528f

118.6MiB / 3.852GiB

0.03%

1.63kB / 2.7kB

nextcloud_app_1
abf5afd165ba

41.54MiB / 3.852GiB

0.00%

1.38kB /0B

nextcloud_web_1
18ec48e0a725

nextcloud_db_1
5c9f55cede02

91.85MiB / 3.852GiB

0.03%

9368 /0B

_images/rd-fstab-file.png
= Ajenti Fstab & ubuntu-focal
Session time : 00:24:02

GENERAL Mounted Fstab
Lt Dashboard
Device Mountpoint Type
B8 Plugins
/dev/disk/by-uuid/01d07049-8a6b-40ea-aSe4-435b56ca4f22 / extd ’ x
£ Settings
&% Users /swap.img none swap ’ x
ToOLS
Add
Check certificates
D3 File Manager
#" Notepad

% Session list

_images/rd-fstab-mount.png
Ajenti Fstab

GENERAL
Ll Dashboard
22 Plugins
& Settings

& Users

TOOLS
Check certificates
O3 File Manager
& Notepad
a%5 Session list

>_ Terminal

SOFTWARE
& Docker
~ %F Services
& SystemV

& systemd

SYSTEM
® Cron
© Date & time

& Filesystem

& Softraid

Mounted

Device

udev

tmpfs

/dev/sda2

tmpfs

tmpfs

tmpfs

/dev/loop0

/dev/loop4

/dev/loop2

/dev/loop6

/dev/loop3

/dev/loop5

tmpfs

/dev/loop7

Fstab

FS Type

devtmpfs

tmpfs

ext4

tmpfs

tmpfs

tmpfs

squashfs

squashfs

squashfs

squashfs

squashfs

squashfs

tmpfs

squashfs

Mountpoint

/dev

/run

/dev/shm

/run/lock

/sys/fs/cgroup

/snap/core18/2344

/snap/core18/2128

/snap/core20/1376

/snap/Ixd/22754

/snap/snapd/15177

/snap/Ixd/21624

/run/user/0

/snap/core20/1405

Used

0 bytes

1016.0 KB

74 GB

0 bytes

0 bytes

0 bytes

55.6 MB

55.5MB

62.0 MB

78.9 MB

43.8 MB

73.3MB

0 bytes

62.0 MB

& ubuntu-focal

Size

19GB

393.6 MB

14.7 GB

19GB

5.0MB

19GB

55.6 MB

55.5 MB

62.0 MB

78.9 MB

43.8 MB

73.3MB

393.6 MB

62.0 MB

Session time : 0024:41

Usage

»

»

»

»

»

»

»

»

»

»

»

»

»

»

_images/rd-filemanager-properties.png
= Ajenti /etc/ajenti/config.yml

GENERAL
L Dashboard
22 Plugins
£ Settings

& Users

TOOLS
#& Check certificates
03 File Manager
& Notepad
2% Session list

> Terminal

SOFTWARE
& Docker
» & Services

P Supervisor

& ubuntu-focal @ &
S e

Full path
Type
Access

Size

configyml

/etc/ajenti/config.yml

0 FLE

628 bytes
Feb 27,2022 12:27:28 PM
root UID O
root GID 0

100600

& Change permissions

#" Edit in Notepad

_images/rd-filemanager.png
= Ajenti /usr/local/lib/python3.8/dist-packages/ajenti_plugin_core & ubuntu-focal

GENERAL Root directory / usr/ local / lib/ python3.8 / dist-packages / ajenti_plugin_core
Ll Dashboard
88 Plugins
| mm _pycache_ &
& Settings
L = api &
&% Users
|| = content b
TOOLS
) ' m locale <]
Check certificates
£ File Manager | ®m resources o
#" Notepad [m views o
&% Session list [D _init_py 213 bytes o
>_ Terminal
D bowerjson 806 bytes o
SCEEWARE O mainpy 2.0KB &
& Docker
O pluginyml 3.9 KB &
» & Services
[D READMEmd 384 bytes o
SYSTEM
" D requirements.txt 32 bytes .
© Cron
© Date & time
& Filesystem
¥ Network

» £ Packages

T coPY DELETE 2 ITEMS SELECTED

B Driiemr

_images/rd-login.png
Ajenti B ubuntu-focal «”

Username

Password

Password forgotten ?

_images/rd-network.png
= Ajenti Network & ubuntu-focal
Session time : 00:24:41

GENERAL Network DNS Hosts

Ll Dashboard

Hosts
Plugins. ostname
ubuntu-focal pdate hostname
@& sei b focal Update h
ettings
& Users
Interfaces
TOOLS
Check certificates 11 enp0s3 o . o

192.168.1.115

O3 File Manager
& Notepad

a% Session list

N Tarminal

_images/rd-notepad.png
Ajenti

Ll Dashboard
Plugins
& Settings

Users

Check certificates
B3 File Manager

& Notepad

&% Session list

> Terminal

CENOU R WN =

os
/etc/ajenti/users.yml

en
default

ubuntu-focal

/etc/ajenti/ajer

[1

& ubuntu-focal

nav.xhtml

 Table of Contents

 		
 Ajenti

_images/rd-power.png
= Ajenti Power management

GENERAL
Ll Dashboard
22 Plugins
& Settings

‘&t Users

TOOLS
Check certificates
O3 File Manager
& Notepad
a%5 Session list

>_ Terminal

SOFTWARE
& Docker
~ & Services
& SystemV

& systemd

SYSTEM
® Cron
© Date & time

& Filesystem

& Softraid

System uptime

00:36:57

Batteries

© No batteries detected

Adapters

© No adapters detected

Operations

&5 Reboot

& ubuntu-focal
Session time : 0022:53

& Suspend

& Hibernate

_images/rd-pwreset.png
Ajenti B ubuntu-focal «”

(%]

myemail@dot.com

_images/rd-packages.png
= Ajenti Packages & ubuntu-focal
Session time : 00:24:21

GENERAL ajentl
Ll Dashboard o
£, ajenti 1.2.23.1% YEUSIIE]
22 Plugins W The server administration panel
& Settings
ajenti-dev-multitool 1.2.0 JYETSPIPIVES
&% Users V .
TooLS

ajenti-panel 2.1.44 XA

Check certificates Ajenti core based panel

O3 File Manager

ajenti.plugin.ace 0.31

&' Notepad Ace editor

a% Session list
ajenti.plugin.augeas 0.19 [EXEURIYYN

B < < X

>_ Terminal Augeas API
SOFTWARE o X
ajenti.plugin.auth-users 0.32 I FUPLPY)
& Docker Custom users authentication
v %3 Services
2 ajenti.plugin.check-certificates 0.8 JZTEVAFLrP]
& SystemV W Check certificates
& systemd
V ajenti.plugin.core 0.100 FZTFVALYP]
SYSTEM Core
® Cron
2 ajenti.plugin.cpu-temp 0.0.4 JYESPEPIPL)
© Date & time (1]

A CPU temperature monitor plugin with chart for Ajenti dashboard.

& Filesystem

. Sa, ajentiplugin.cpu-temp-widget 0.1
¥ Network
W CPU Temp widget
v & Packages
o o Sa, aentiplugincron 0.4 [EXFTRTTRN
Wl con
5 Power V ajenti.plugin.dashboard 0.40

Dashboard
& Softraid

_images/rd-plugins.png
= Ajenti Plugins & ubuntupython

EEE Core
. Dashboard

_ @ Ajenti core 2.1.34,n0 upgrades available.
& Settings Installed plu
A8 Users

0 Ace editor ace 0.6

TooLs 0 Augeas API augeas 0.16

Check certficates
Check certficates check certifcates 0.3

3 File Manager
& Core core 094
Notepad
o Session st 42 Custom users authentication auth users 0.29
>—Terminal 1 Dashboard dashiboard 0.57 o]
SOFTWARE © Date &time datetime 037 o
« 28 senvices 3 File Manager flemanager 025 @
OB & Filesystem AP ilesystem 0.44 2]
& systemd
o ¥ Network neork022 o
sysTem
Notepad notepad 025 @
© Date & time.
8 Packages packages 051 @
¥ Network
~ 68 Packages B8 Plugins plugins 045 @
& AT % Power management povier 020 @
@ PP B8 Services services 0.28 a

Y Gz s Session st session 1 0.1

_images/rd-settings-security.png
= Ajenti Settings

GENERAL
Ll Dashboard

22 Plugins

sers

TOOLS
Check certificates
O3 File Manager
& Notepad
a% Session list

>_ Terminal

SOFTWARE
& Docker

» 03 Services

SYSTEM

® Cron
© Date & time

& Filesystem

General Security Smtp relay

Authentication provider

0S users

Sudo

Allow sudo elevation for logged in users

Max session time

3600

SSL
Enable SSL

SSL certificate file

/etc/ajenti/ajenti.pem

SSL FQDN certificate file

SSL client authentication

Enable client authentication
Deny other means of authentication

]

& ubuntu-focal

£ Generate a self-signed certificate

_images/rd-settings-smtp.png
= Ajenti Settings & ubuntu-focal

GENERAL General Security Smtp relay

Ll Dashboard

Email rel
88 Plugins 2y

Enable email relay for notification
& Users

SMTP host SMTP user

To0LS — i

Check certificates

Port SMTP password

O File M

& Notepad

&5 Session list

Template email reset
>_ Terminal

SOFTWARE
& Docker

» B Services

SYSTEM
® Cron
© Date & time

& Filesystem

_images/rd-sessions.png
= Ajenti List all sessions & ubuntu-focal @ e

Session time :00:16:48

TR User @ P Logged in Timeout
(2 Ceeiteere) [| 29 March 2022 16:15:18 29 March 2022 16:35:18
22 Plugins
= 29 March 2022 16:15:01 29 March 2022 16:35:01
& Settings
&% Users
TOOLS

#& Check certificates
O3 File Manager

& Notepad

> Terminal

SOFTWARE

& Docker

» O Services

_images/rd-settings-general.png
= Ajenti Settings & ubuntu-focal

CENERSS General Security Smtp relay
L Dashboard
Machine name Color ta
22 Plugins 9
&% Users
Language
TOOLS en o
Check certificates
O File Manager
Binding
& Notepad
- UNIX 0.0.0.0 8000
&% Session list
>_ Terminal
SOFTWARE
& Docker
» 0 Services
SYSTEM
® Cron

_images/rd-systemd.png
Ajenti

GENERAL

L. Dashboard

2 Plugins
& Settings

8% Users

TooLS
Check certificates
O3 File Manager
& Notepad
#% Session list

> Terminal

SOFTWARE
& Docker
~ 25 Services
£ Supervisor
& System V.

P Supervisor

Filt

vices

I ccounts-daemon

D0 zprort-autoreport

0 apt-caily

[0 2ot-daily-upgrade

& ubuntu-focal
Session time : 00:18:

~
(52

Q

Q

L @ & o0 0

<

V V V V V V. B B V V V V vV Vv Vv &1

_images/rd-terminal.png
*
o

14 Dashboard bin etc initrd.ing.old lostsfound run

boot hose b sbin

Plugi dev initrd.ing lib6d nt snap

s in / (16:37:17
ing update

W p://archive.ubuntu. con/ubuntu blonic InRelease
Get:2 http: //archive.ubuntu. con/ubuntu bionic-security InReleass
Get:3 http://archive.ubuntu. con/ubuntu bionic-updates Ine
Fetched 177 kB in 0s (451 kb/s
Reading package Uists... Done
Building dependency tree
Reading state inforsation... Done
Check certificate packages can be upgraded. Run 'apt List --upgradable

n / 116:37:34]

used available
n o o 329
o

116:37:54

& systemV
& systemd

¥ Network

Packages

_images/rd-users-list.png
= Ajenti Users

GENERAL
L Dashboard
88 Plugins

& Settings

sers

TOOLS

Check certificates
O File Manager

& Notepad

&% Session list

>_ Terminal

SOFTWARE
& Docker

» 0 Services

& ubuntu-focal

root
root (0)

@ amaud
@B amaud (1000)

New user name

@ Default root password is admin .

_static/comment-bright.png

_images/rd-users-properties.png
arnaud

System account

arnaud

@ This user will be constrained by POSIX permissions for the selected system
account.

A\ No password set : the user will not be able to log in.

New password
Update password

Email

test@test.com

Sidebar entries Permissions

A\ This only affects appearance of the sidebar. Disable actual permissions
under the Permissions tab.

Check certificates
Cron
Dashboard
Date & time

Docker

File Manager

Filesystem
Network
Notepad
Packages
Plugins
Power
Services
Session list
Settings
Softraid
Terminal

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

_static/up.png

_images/rd-cron-add.png
Modify normal task

Minute

00

01
Day of the month

Comment

Run my backup each day on Q‘

OK

_images/rd-cron-list.png
= Ajenti Cron

GENERAL
Ll Dashboard
88 Plugins
& Settings

&% Users

TOOLS
Check certificates
O File Manager
& Notepad
&% Session list
>_ Terminal

SOFTWARE

.

& ubuntu-focal
Session time : 00:22:1

Jobs Special

Environment variables

Minute Hour Day Month Day Command
(month) (week)
00 01 N N N bash /srv/backup.sh F
05 N N N N rsync /srv/dev /var/www o
Add

_images/rd-check_cert-add.png
New hostname

URL

mail

Port (default is 443 if empty)

587

_images/rd-check_cert-list.png
= Ajenti Check certificates

GENERAL
Ll Dashboard
22 Plugins
& Settings

& Users

TOOLS

Check certificates

O3 File Manager
& Notepad
a%5 Session list

>_ Terminal

SOFTWARE
& Docker

» 23 Services

Add host

Port

8006

443

443

443

8000

443

Issuer

Let's Encrypt

Let's Encrypt

Let's Encrypt

Let's Encrypt

End

Can not handle SSL on this port !

2022-06-04 01:03:02

2022-05-08 22:45:40

2022-06-04 01:03:02

Host refuse the connection !

2022-05-25 03:49:23

& ubuntu-focal

X < <

<

_images/rd-dashboard.png
= Ajenti Dashboard

& ubuntu-python

GENERAL
Home

2 Plugins. Hostname

ubuntu-python

A8 Users Actvecores CPUusage

TooLs 0/1 0%

1min Smin
05 File Manager 0 0

15min

0.03

+addwier @M Tavs~

Upime
00:40:47

st Memoryusge
39GB 11%
Toat Flepem:
296 25%
GB

_images/example-widget.png
Home

Total

Second

3.8 GB

Memory usage

35%

15:47:43

1%

+ Add widget

CPU usage
Hostname

Load average

CPU usag Memory usage

Uptime

S

Tabsw

_images/frontend-architecture.png

